
Sequence-Function Protein Analysis Using

Annotated Context Free Grammars ∗

Salvatore Spinella Eva Sciacca

Dipartimento di Informatica, Università di Torino

Corso Svizzera 185, I-10149 Torino, Italy;

{spinella,sciacca}@di.unito.it

Paola Giannini

Dipartimento di Informatica, Università del Piemonte Orientale,

Via Bellini 25/G, 15100 Alessandria, Italy

giannini@mfn.unipmn.it

Identification and understanding of protein function is a fundamental task in
the analysis of complex biological systems. Protein structures and functions are
encoded in the underlying amino acid sequence. The exact relationship between
primary structure of the protein, its three-dimensional structure and its func-
tion is one of the fundamental unanswered questions in biology. The mapping
of protein sequences with respect to their structure and function may benefit
from the analogy that we have in the structuring of languages, particularly in
the assignment of meaning to words. Starting from Searls in 1993 [4] the anal-
ogy between biology and linguistic has been studied by a growing number of
researchers. Thus, language analysis [1] has found applications to biological se-
quences, using various types of “vocabulary”, for example the nucleotides in the
case of DNA (e.g. [5]), and the standard 20 amino acids in the case of proteins
(e.g. [6]).

We made use of Context-Free Grammars (CFGs) and a protein classification
algorithm to develop Annotated Context Free Grammars (ACFGs). ACFGs are
CFGs in which non terminal symbols are annotated using an n-gram Bayesian
classifier. ACFGs are used to analyse the connection between protein chains
and protein functions and can be applied to the interpretation and detection of
amino acids involved in different functional regions. ACFGs are built using a
bottom-up analysis, inspired by LZ77 compression algorithm [7], starting with
the input of all protein sequences and attempting to rewrite them backward to
the starting symbol. The analysis procedure locates the most basic motifs of
a given length substituting them with a new non terminal symbol annotated
with the most likely domain of the motifs. The most basic motifs are the
most frequent motifs occurring in the protein family according to the theory of

∗This research is founded by the BioBITs Project (Converging Technologies 2007, area:
Biotechnology-ICT)

1

conservation across protein domains. In fact, it is well known that structural
and functional similarities among proteins are frequently conserved in a stretch
of few amino acids [2].

Proteins are composed of evolutionarily conserved units called domains, cor-
responding to subunits of the 3-D structure of a protein, that have distinct
molecular function and structure. The sequential order of domains in a protein
sequence is known as its protein domain architecture. Architectures are useful
for classifying evolutionarily related proteins.

The aim of this work was to build ACFGs for specific families of proteins.
To achieve this goal we represent the primary structure of a protein as a string
σ ∈ Σ+ where Σ is an alphabet for the set of 20 amino acids, and D is a set
of domain identifiers of an architecture of proteins in a specific family. Starting
with a specific family of proteins F ⊂ Σ+, we build an ACFG that generates
the strings in F and whose non terminal symbols are labelled with domains.

Let us first introduce the (grammar) notation needed. Let σ ∈ Σ+, with
σ[h . . . h + k] we denote the subsequence of σ starting at the h-th symbol and
ending at the h+k-th. An Annotated Context-Free Grammar G is a 5-tuple G =
(V ,Σ ,S , δ,R) where: V is a finite set of non-terminal symbols, (representing
different subsequences of amino acids in the protein sequence), Σ is a finite set of
terminals, (representing the set of 20 amino acids), S is the start symbol of the
grammar, δ : Σ+ → D is a function mapping strings (substrings of the initial
primary protein structures) into a set of domain identifiers D, and R is a set
of productions Ad → w , or A → w where A ∈ V , d ∈ D , and w ∈ (V ∪ Σ)+.
As usual with w ⇒R w′ we mean that the string w′ is obtained from w by
replacing a non terminal-symbol A with v where A → v ∈ R, and w ⇒∗

R
w′ is

the transitive and reflexive closure of ⇒R.
The algorithm is parametrized by the length of the most frequent pattern

that constitutes motifs of F. The annotated grammar is computed incrementally.
At each step i it is generated a production Ad → w, where A is a new non
terminal symbol, w is the most frequent pattern of F(i) (a rewriting of the strings
in F in which portion of the strings are replaced by non terminal symbols), and
d is a domain. The domain annotation is performed through classification by
means of the function δ : Σ+ → D , such that if δ(a1 . . . ak) = d , then for all
proteins σ such that σ[h . . . h + k] = a1 . . . ak then σ[h . . . h + k] is the portion
of σ corresponding to the domain d .

Algorithm 1 shows the pseudo code of the proposed approach. The function
MostFrequentPattern(F(i), l) searches for the most frequent pattern w of length
l in F(i). The function Substitute(v, A(i), w) substitutes the non terminal
symbol A(i) for the pattern w in the string v. As we can see the substitution
is done in all strings of F(i), and in the right-hand-side of the production of
R(i), so that the language generated by the productions R(i+1) plus the new
production is the same as the language generated by R(i). So that, at each step,
we produce an additional classification. The algorithm ends, when there are no
more sequences σ ∈ F(n) of length greater or equal to l, returning the grammar
produced.

Let (V ,Σ ,S , δ,R) be the grammar returned from the algorithm. The j-th

2

input: FASTA Sequences F, length l, function δ

F(0) ← F = {σ1, . . . , σ|F|};

R(0) ← {S → Sj , Sj → σj | 1 ≤ j ≤ |F|};

V (0) ← {S} ∪ {Sj | 1 ≤ j ≤ |F|};
i← 0;
repeat

w ← MostFrequentPattern(F(i), l);

let A(i) be a fresh non terminal symbol and;
let σ ∈ Σ+ be such that w ⇒∗

R(i) σ;

R(i+1) ← {A
(i)
δ(σ) → w} ∪ {Ad → Substitute(v, A(i), w)|Ad → v ∈

R(i)} ∪ {Sj → Substitute(v, A(i), w)|Sj → v ∈ R(i)};

F(i+1) ← {Substitute(v, A(i), w) | v ∈ F(i)};

V (i+1) ← V (i) ∪ {A(i)};
i← i + 1;

until ∀σ ∈ F(i)(|σ| < l);

return (V (i),Σ ,S , δ,R(i))

Algorithm 1: Annotated Context-Free Grammar pseudo-code

protein primary structure σj is derived from the symbol Sj , that is Sj ⇒
∗
R

σj .
Moreover, its derivation tree has the following properties: (a) the node corre-
sponding to S in not annotated and has |F| children; (b) the node corresponding
to Sj in not annotated and has at most l − 1 children; (c) all internal nodes
(corresponding to non-terminal symbols except for the symbols S and Sj) are
annotated and have exactly l children; and (d) leaves correspond to the amino
acids. The function δ : Σ+ → D of the ACFG that maps a set of sub-sequences
of proteins α = σ[i . . . i+k] = a1 . . . ak to one of a set of |D| pre-defined domains
D = {d1, d2, . . . , d|D|} is produced by a n-gram Bayesian text classifier. A su-
pervised learning framework provided by the classifier is used to train the text
classifier on a set of labelled training examples (Di, di) : i = 1, . . . , |D|. Here Di

denotes the i-th training domain model containing a set of protein subsequences
of a family belonging to a specific domain and di is the corresponding domain.
The principle for using a n-gram Bayesian text classifier is to determine the cat-
egory/domain that makes a given amino acid sequence most likely to have been
generated by a domain model D. Thus, we train a separate language model for
each domain, and classify a protein sub-sequence by evaluating its likelihood
under each domain, choosing the category according to it.

Our methodology was applied to a class of Antimicrobial Peptides (AmPs):
the Frog antimicrobial peptides family. This family consists of the major classes
of antimicrobial peptides secreted from the skin of frogs that protect the frogs
against invading microbes. They are typically 10-50 amino acids long and are
derived from proteolytic cleavage of larger precursors. Major classes of peptides
such esculentin, gaegurin, brevinin, rugosin and ranatuerin are included in this
family [3]. According to the PFAM database, the domain architecture in which

3

the 68% of proteins of this domain is found implies a presence of another domain
located in the first half of the sequence: the Brevenin family. This family
contains a number of defence peptides secreted from the skin of amphibians.

We built the ACFG for the frog AMP family,GFROG, considering the two
domain identifiers D = {AMP, BREVENIN}. We set the length l of the most
frequent motifs to 3. Finally, the classifier for the function mapping the subse-
quences of amino acids into the set of domain identifiers was trained. A compact
notation for the derivation annotated tree is shown above where {. . .} represents
a “BREVENIN” node while (. . .) represents an “AMP” node:

{ { { { (M F T) M (K K S)} L L} F { L F { F (L G T) I}}} { { ((S L S) L C
) { E E E} R} { S { { A D E} D D} { G G { E M T}}} ({ { E E E} V { K R G}}
(I L { D T L}) ((K Q (F { A K G} V)) G (K D L)))} { V K G}} ((A A Q
) ((G V L) S T) (V S ((C K L) (A K T) C)))

ACFG allow us to analyse the functional conserved regions, where they are
located and how they are related each other inside the primary structure of
the protein. In this case we notice that some “AMP” nodes are contained
by “BREVENIN” nodes, this result lead us to suppose that a common an-
cestor belonging to the domain “AMP” conserved that motifs to evolve the
“BREVENIN” domain.

Through this case study, our approach pointed out some fundamental as-
pects regarding the relationship between sequence and functional domains of
proteins and how protein domain motifs are preserved by natural evolution in
the amino acid sequences. The showed results are comparable with the state
of art of sequence alignment based frameworks (such as the PFAM tool) and
give a structured information on the protein sequences more powerful than the
current annotation systems producing regular grammars. A framework based
on ACFGs structuring suggests also a methodology for synthesis of new proteins
in order to design undiscovered multi-functional proteins.

For future works, we intend to further our research optimizing our gram-
matical structures. We are also planning to implement grammatical inference
(GI) algorithms for our ACFG in order to obtain grammatical models to check
for the presence or absence of a domain in a protein sequence.

References

[1] M. Davis, R. Sigal, and E.J. Weyuker, Computability, complexity, and languages: funda-

mentals of theoretical computer science, Morgan Kaufmann Pub, 1994.

[2] J.M. Otaki, S. Ienaka, T. Gotoh, and H. Yamamoto, Availability of short amino acid

sequences in proteins, Protein Science: A Publication of the Protein Society 14 (2005),
no. 3, 617.

[3] A.C. Rinaldi, Antimicrobial peptides from amphibian skin: an expanding scenario: Com-

mentary, Current opinion in chemical biology 6 (2002), no. 6, 799–804.

[4] D.B. Searls, The computational linguistics of biological sequences, Artificial Intelligence
and Molecular Biology (1993), 47–120.

[5] Searls, D.B., The language of genes, Nature 420 (2002), no. 6912, 211–217.

[6] J. Waldispühl and J.M. Steyaert, Modeling and predicting all-α transmembrane proteins

including helix-helix pairing, Theoretical Computer Science 335 (2005), no. 1, 67–92.

[7] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE trans-
actions on Information Theory 23 (1977), no. 3, 337–343.

4

